Physics at the VLHC

- 1. Future Colliders
- 2. VLHC detector issues
- 3. Physics Potential of the VLHC
- 4. Summary

Ulrich Baur
State University of New York at Buffalo

1 – Future Colliders

- e^+e^- Linear Colliders
 - TESLA/NLC: $\sqrt{s} = 500 \text{ GeV} 1.5 \text{ TeV}$ $\mathcal{L} = \text{few} \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ CLIC (CERN): $\sqrt{s} = 3 \text{ TeV} 5 \text{ TeV}$ $\mathcal{L} \approx 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$
- Muon Collider
 - $\sqrt{s} = 400 \text{ GeV} 3 \text{ TeV}$ $\mathcal{L} = 10^{33} \text{ cm}^{-2} \text{ s}^{-1} 5 \cdot 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

- LHC upgrade scenarios (SLHC) studied by ATLAS (ATL-PHYS-2001-002) and CMS:
 - luminosity upgrade to

$$\mathcal{L} = 5 \cdot 10^{34} \text{ cm}^{-2} \text{ s}^{-1} - 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$$

- rightharpoonup and/or energy upgrade: $\sqrt{s}=28~\text{TeV}$ requires $\sim 17~\text{T}$ magnets (do not exist yet)
- remarks
- \rightarrow for $\mathcal{L} = 10^{35} \ \mathrm{cm}^{-2} \ \mathrm{s}^{-1}$ the performance of LHC detectors is degraded, even with major upgrades (occupancy and radiation, pile-up)
- ightharpoonup similar problems at any hadron collider running at $\mathcal{L} \gg 10^{34}~\mathrm{cm}^{-2}~\mathrm{s}^{-1}$
- \rightarrow in general, an increase in \sqrt{s} is easier to exploit than an increase in luminosity

• VLHC (Fermilab-TM-2149)

\sqrt{s} (TeV)	\mathcal{L} (cm ⁻² s ⁻¹)
125	$5.1\cdot10^{34}$
150	$3.6\cdot10^{34}$
175	$2.7\cdot 10^{34}$
200	$2.1\cdot 10^{34}$

up to 50 interactions/crossing (cf. LHC: 20)

remarks

- TESLA/NLC give access to the same energy regime as the LHC. They complement the LHC
- CLIC uses a technology (two beam acceleration) very different from that used by TESLA/NLC and is a post TESLA/NLC machine
- CLIC begins to give access to energies which the LHC (without upgrade in energy) cannot reach

• remarks (cont.)

- stage 2 of the VLHC is a post LHC and post TESLA/NLC machine
- stage 2 of the VLHC breaks completely new ground

rest of this talk

- remarks on detector requirements
- compare LHC upgrade scenarios with stage 1 of the VLHC where appropriate
- discuss physics reach of stage 2 of the VLHC
- all estimates/extrapolations carry substantial uncertainties. More precise results should be available after Snowmass

• Result:

regardless of what we will find at the LHC we will eventually want to have a hadron collider operating in the 100 TeV range

VLHC: UV fixed point of HEP program

2 – VLHC Detector Issues

- Physics should drive the needed detector technologies
- LHC technology should be ok for VLHC stage 1 detectors
- need serious R&D for stage 2 detectors
 - electron detection
 - → high charged track multiplicity is a potential problem
 - → isolation is messy: many interactions/crossing
 - muon detection

momentum measurement for multi-TeV μ 's is difficult and requires a very large, many Tesla magnet

 $\mathcal{F}E_{T}$

difficult due to many interactions/crossing

- r jets
- \rightarrow need small constant term $(\sigma/E \sim 1/\sqrt{E})$
- → need to understand how many interactions/crossing influence jet energies (similar to LHC)
- \rightarrow need forward jet tag (up to $|\eta| = 6 7$?)
- ☞ b-tagging

radiation environment and track multiplicity pose problems

3 – Physics Potential of the VLHC

To illustrate the physics potential of the VLHC we consider a few more or less representative examples:

- precision SM physics and anomalous WWV ($V = \gamma, Z$) couplings
- Higgs boson physics
- supersymmetry
- strong electroweak symmetry breaking
- new gauge bosons
- compositeness (excited quarks and leptons)
- extra dimensions

Precision SM Physics

- this is not the primary reason for building the VLHC!
- well known from previous machines; many areas of the SM will have been tested at the 1-loop level
- for measurements where LHC is competitive (M_W, m_{top}) , the ultimate precision is limited by systematic uncertainties. These are difficult to reduce
- special case: anomalous gauge boson couplings
 - rightharpoonup concentrate on trilinear WWV ($V = \gamma, Z$) couplings: $\kappa_V, \lambda_V, g_1^Z$
 - or $\sim s$); details depend on coupling and process considered
 - ightharpoonup need form factor to guarantee S-matrix unitarity
 - rightharpoonup limits depend on form factor scale Λ_{FF}
 - rightharpoonup limits scale roughly with $(\int \mathcal{L} dt)^{1/4}$
 - \rightarrow increasing $\int \mathcal{L}dt$ by a factor 10, strengthens bounds by about a factor 2 3

• 95% CL limits:

$$rightharpoons$$
 $\Delta \kappa_Z, \lambda_Z, \Delta g_1^Z \text{ from } pp \to WZ \to \ell_1 \nu \ell_2^+ \ell_2^-$

\sqrt{s}	14 TeV	28 TeV	40 TeV	200 TeV	CLIC (5 TeV)
$\int\!\mathcal{L}dt$	$100 \mathrm{fb}^{-1}$	$100 \mathrm{fb}^{-1}$	$100 \mathrm{fb}^{-1}$	$200 \mathrm{fb}^{-1}$	1 ab^{-1}
$\Delta \kappa_{\gamma}$	0.034	0.027	0.023	0.013	$6 \cdot 10^{-5}$
λ_{γ}	0.0014	$8 \cdot 10^{-4}$	$6 \cdot 10^{-4}$	$3 \cdot 10^{-4}$	$8 \cdot 10^{-5}$
$\Delta \kappa_Z$	0.040	0.036	0.035	0.020	$7 \cdot 10^{-5}$
λ_Z	0.0028	0.0023	0.0020	0.0011	$6 \cdot 10^{-5}$
Δg_1^Z	0.0038	0.0023	0.0020	0.0011	$2 \cdot 10^{-4}$

- for larger values of Λ_{FF} , the limits improve substantially: $\sqrt{s}=200$ TeV, $\Lambda_{FF}=50$ TeV: $|\lambda_{\gamma}|<0.0001$
- \sim SM radiative corrections are $\mathcal{O}(\text{few} \times 10^{-4})$
- hadron and e^+e^- colliders are complementary
 - hadron colliders probe high energy behaviour of helicity amplitudes
 - e^+e^- colliders test angular distributions

Higgs boson physics

- the SM Higgs boson will be discovered, if it exists, at the Tevatron/LHC over the entire allowed mass range (< 1 TeV)
- measurement of SM Higgs parameters at the LHC:
 - $\sim M_H$ to 0.1%
 - rightharpoons Γ_H to $\leq 10\%$
 - $\sigma \times Br$ to 10%
 - ratios of couplings $(WWH, ZZH, \bar{t}tH, \bar{b}bH)$ to 10-20%, in many cases dominated by statistics
 - weak boson fusion and forward jet tagging crucial to measure Higgs couplings

- precision of ratios of couplings might (need more studies!) improve by about a factor 2 at SLHC
- TESLA/NLC $H\bar{f}f$ couplings (Battaglia):

rightharpoonup similar precision for VVH (V=W,Z) couplings

• HHH coupling in e^+e^- collisions:

- linear colliders can measure all couplings to $\mathcal{O}(10^{-2})$
- VLHC:

 - → easier to suppress bgd.
 - - → need detailed study

what if ...

- no Higgs boson is found at the LHC:
 - strongly interacting Higgs sector?
 - → VLHC (stage 1 may give hints already)
- Higgs boson compatible with a SM interpretation is found at the LHC, but no sparticles:
 - → TESLA/NLC and/or CLIC for precision Higgs boson physics
 - → VLHC for high mass sparticles search (and precision Higgs boson physics?)
- MSSM, Higgs boson(s) and some sparticles are found at the LHC:
 - → CLIC and/or VLHC complete sparticle spectrum and for precision Higgs boson physics

Supersymmetry

- with 100 fb⁻¹, the LHC can find squarks (\tilde{q}) and gluinos (\tilde{g}) if their masses are ≤ 2 TeV
- increasing the LHC luminosity by a factor 10 extends the mass reach by about 20%.
- doubling the LHC energy to $\sqrt{s} = 28$ TeV provides access to \tilde{q} and \tilde{g} with masses up to 3-4 TeV \rightarrow at stage 1 of the VLHC one can detect squarks and gluinos with masses up to 4-5.5 TeV
- LHC: other sparticles are mainly detected from \tilde{q} and \tilde{g} cascade decays
 - for many mSUGRA models, the LHC will miss most of the sleptons, charginos and neutralinos, and the heavy Higgs bosons
- one can construct inverted hierarchy models (IHM) where none of the sparticles can be discovered (5 σ) at the LHC (Baer et al.)

- stage 2 of the VLHC might be able to probe the dynamics of SUSY breaking
 - any SUSY theory must contain a mechanism for breaking SUSY
 - and a method (messengers) for communicating SUSY breaking to the sparticles
 - two scales:
 - \rightarrow SUSY breaking vev F
 - \rightarrow messenger scale M
 - sparticle mass:

$$\tilde{m} \sim \eta \, \frac{F}{M}$$

 η : dimensionless suppression factor from coupling constants

- ightharpoonup for $\sqrt{F}\sim M$, both messenger fields and SUSY breaking scale could be as low as $10-100~{\rm TeV}$
- → could be accessible at stage 2 of the VLHC

- M can be measured from sparticle spectroscopy
- \rightarrow expected precision at the LHC: $\sim 30\%$
- F from NLSP lifetime and mass

• SUSY mass scales:

- electroweak scale protected if superpartners coupling most strongly to Higgs boson have masses
- < 1 TeV
- $riangleq ilde{t}, ilde{b}_L,$ weak gauginos, higgsinos have $m < 1~{
 m TeV}$
- other squarks/sleptons contribute to weak scale at two loop
- $\rightarrow m < 20 \text{ TeV}$

what if ...

- the LHC finds \tilde{q} and \tilde{g} and maybe a few other sparticles
 - → VLHC and CLIC have a good chance to fill in the gaps of the sparticle spectrum
- the LHC finds \tilde{t} and \tilde{g} but misses the first two generation squarks
 - → VLHC (maybe stage 1, but certainly stage 2) should find the missing squarks (no quantitative estimates so far)
- the LHC discovers SUSY and finds it is low energy GMSB
 - → stage 2 of the VLHC can probe messenger sector

strong electroweak symmetry breaking

- if no Higgs boson exists, one expects that longitudinal W's and Z's interact strongly for $\sqrt{\hat{s}} \ge 1 \text{ TeV}$
- vector boson scattering, eg:

- forward jet tagging and central jet veto are powerful tools to reduce background
- example:
 - non-resonant scattering
 - most difficult case
 - rightharpoonup best channel: $W^{\pm}W^{\pm} \to \ell_1^{\pm}\nu\ell_2^{\pm}\nu$
 - rightharpoonup compare 1 TeV SM Higgs boson with K-matrix unitarization model (Bagger et al.)

rightharpoonup K-matrix unitarization: replace partial wave amplitudes a_l^I by

$$t_l^I = \frac{a_l^I}{1 - ia_l^I}$$

• significance versus \sqrt{s} :

- signal and background have same shape
 - → large statistics needed for a convincing signal (ATLAS)

rightharpoonup hatched: WW and WZ background

☞ solid: *K*-matrix unitarization

dashed: 1 TeV SM Higgs boson

- LHC, at $\mathcal{L} = 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$:
 - degradation of forward jet tag and central jet veto due to pile-up
 - rightharpoonup large ($\approx 50\%$) probability for fake jet tags even at momenta of a few hundred GeV
 - \rightarrow luminosities $\mathcal{L} > 10^{34} \ \mathrm{cm^{-2} \ s^{-1}}$ do not help much

what if ...

- LHC does not find a Higgs boson but observes hints for strong electroweak symmetry breaking
 - → stage 1 of the VLHC should find convincing signal
 - → fully explore strong dynamics at stage 2 of the VLHC

Extra gauge bosons

- additional gauge bosons, W' and Z', appear in many GUT models (E_6, \dots)
- the reach depends on the W', Z' couplings to quarks and charged leptons
- concentrate on $Z' \to \mu^+ \mu^-$ with SM couplings here (classic benchmark)

rightharpoonup similar reach for W''s

- can measure:
 - rightharpoonup Z' mass at (energy or luminosity upgraded) LHC to <1%
 - rightharpoonup Z' width to a few percent
- CLIC: from indirect measurements: sensitivity up to $M_{Z^\prime}=30~{\rm TeV}$
- direct search at CLIC: only for $M_{Z'} < \sqrt{s}$
 - $rac{10^{-4}}{6}$ can measure Z' mass to $< 10^{-4}$
 - rightharpoonup Z' width and peak cross section to better than 1%

Compositeness

- if quarks and/or leptons are composite with a scale Λ (scale of interactions which binds constituents):
 - rightharpoons for $\sqrt{\hat{s}} \ll \Lambda$: contact interactions
 - for $\sqrt{\hat{s}} \geq \Lambda$: production of excited quarks (q^*) and leptons (ℓ^*)
- contact interactions: example: 2-jet events
 - expect excess of high E_T centrally produced jets
 - \sim maximum scale probed for 300 fb⁻¹:

\sqrt{s} (TeV)	Λ (TeV)
14	40
28	60
40	~ 75
100	~ 115
200	~ 130

- excited quarks:
 - rightharpoonup produced via qg fusion in s-channel: $qg o q^*$
 - rightharpoonup decays: $q^* o qg$, $q\gamma$, qW, qZ
 - rightharpoonup effective Lagrangian for $q^*q\gamma$ coupling is of magnetic moment type

$${\cal L} \sim rac{f_s g}{\Lambda} \, q^* \sigma_{\mu
u} F^{\mu
u} q$$

- mass reach for $q^* \to jj, f_s = 1, M_{q^*} = \Lambda$:
 - Arr LHC, 100 fb⁻¹ (1000 fb⁻¹): 7 TeV (8 TeV)
 - $\sqrt{s} = 28 \text{ TeV}, 100 \text{ fb}^{-1} (1000 \text{ fb}^{-1})$: 10 TeV (11 TeV)

 $ightharpoonup \text{VLHC: } 5\sigma \text{ reach for } f_s = 1, M_{q^*} = \Lambda:$

rightharpoonup for $f_s = 0.1$ the reach is about a factor 2 smaller

what if ...

- the LHC finds evidence for contact interactions?
 - $\rightarrow \Lambda < 60 \text{ TeV}$
 - → find excited quarks and/or leptons at the VLHC (stage 2)

Extra dimensions

- Fields propagating in more than 4 dimensions lead to Kaluza-Klein (KK) excitations, modifications to cross section, or E_T signatures
- example: jet+graviton production in ADD model; graviton manifests as E_T
 - $rightharpoonup cross section depends on <math>M_D$, the scale of gravity and δ , the number of extra dimensions ($\delta = 1$ ruled out by celestial mechanics)
 - rightharpoonup main background: $Z(\to \bar{\nu}\nu) + jets$ (Hinchliffe)

• M_D reach of the (upgraded) LHC and VLHC:

- warped extra dimensions (RS models):
 - SM gauge and fermion fields live on the TeV-brane
 - or they may propagate in the bulk
- SM fields constrained to the TeV brane:
 - colliders are KK resonance factories
 - rightharpoonup production of graviton KK excitations $(G^{(n)})$:

$$\bar{q}q,\,gg o G^{(n)} o \ell^+\ell^-$$

• example: LHC (Davoudiasl et al.)

- $ightharpoonup {
 m red}$: $m_{G^{(1)}}=1$ TeV, $k/\bar{M}_{Pl}=0.1$
- $ightharpoonup \operatorname{green}$: $m_{G^{(1)}}=1.5$ TeV, $k/\bar{M}_{Pl}=0.2$
- $\rightarrow k$: AdS₅ curvature scale
- the LHC with 100 fb⁻¹ can determine the spin-2 nature of a KK graviton for $m_{G^{(1)}} \leq 4.2 \text{ TeV}$
 - → no VLHC studies yet (after Snowmass?)
 - rightharpoonup CLIC: sensitive to $G^{(1)}$ up to kinematic limit

- if no evidence for new particles at LHC or TESLA/NLC:
 - search for indirect effects of KK excitations through contact like interactions
 - example (SM fields propagating in the bulk) 95% CL, Drell-Yan production (Davoudiasl et al.):

- $rightharpoonup m_1^{\min}$: mass of lightest KK excitation
- $= \nu$: bulk mass parameter; controls how far off the TeV-brane $(\nu \to \infty)$ the wave function is located
- \Leftrightarrow black: Tevatron, Run I, red: Tevatron, 2 fb⁻¹,

blue: Tevatron, 30 fb $^{-1}$, green: LHC, 10 fb $^{-1}$,

cyan: LHC, 100 fb^{-1}

→ no VLHC studies yet (after Snowmass?)

what if ...

- the LHC finds evidence for extra-dimensions?
 - \rightarrow the VLHC (stage 2) will directly probe M_D
 - → VLHC could find totally unexpected physics

VLHC Pocket Guide

channel	LHC	LHC	28 TeV	40 TeV	200 TeV
particle	$100 \mathrm{fb}^{-1}$	1 ab^{-1}	$100 \mathrm{fb}^{-1}$	$100 \; {\rm fb}^{-1}$	$100 \mathrm{fb}^{-1}$
$ ilde{q}, ilde{g}$	2	2.5	4	5.5	> 10
W' Z'	4.5	5.4	7	8.5	33
q^*	7	8	10	13	50
Λ comp.	33	50	60	75	130
$M_D \ (\delta = 2)$	9	12	15	20	75

- large uncertainties
- not exhaustive
- all masses in TeV

4 – Summary

- Upgrading the LHC luminosity by a factor 10 increases the reach by 20%
- Doubling the LHC energy to $\sqrt{s}=28$ TeV increases the reach by up to a factor 2
- stage 1 of the VLHC only insignificantly increases the reach of a 28 TeV LHC
 - → makes only sense if LHC is not significantly upgraded in energy
- At some point we will, inevitably, want to go to the 100 TeV region
- the VLHC is the only machine which can directly discover new physics in the multi 10 TeV region
- most of the what if . . . scenarios discussed suggest that we need the VLHC
 - → we don't need to wait for LHC results to decide
- need a coordinated and coherent international plan for the VLHC which is part of a comprehensive and global HEP program