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1 – Future Colliders

� ������� Linear Colliders

☞ TESLA/NLC:
� � 	 
����

GeV – 1.5 TeV
 	 ����� � ����������� ��� ���"!

☞ CLIC (CERN):
� � 	 #

TeV – 5 TeV
 $ �%� �'& �(� �)� � �"!

� Muon Collider

☞
� � 	 *+�,�

GeV – 3 TeV

☞

 	 �%� �-� �(� �)� � �"!/. 
 01�%� ��� ��� �)� � �2!
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� LHC upgrade scenarios (SLHC)

studied by ATLAS (ATL-PHYS-2001-002)

and CMS:

☞ luminosity upgrade to
 	 
 0,������� ��� ��� ���"! . �%��� & ��� �)� � �2!

☞ and/or energy upgrade:
� � 	 ���

TeV

requires �
���

T magnets (do not exist yet)

☞ remarks

➞ for

 	 �%���'& ��� ��� ���"! the performance of

LHC detectors is degraded, even with major up-

grades (occupancy and radiation, pile-up)

➞ similar problems at any hadron collider running

at

 � �%� ��� ��� ��� � �"!

➞ in general, an increase in
� �

is easier to exploit

than an increase in luminosity

Ulrich Baur HEPAP subpanel 06/11/01



� VLHC (Fermilab-TM-2149)

☞ stage 1:
� � 	 *+�

TeV,

 	 �%� ��� ��� ��� � �"!

☞ stage 2:

� �
(TeV)



(cm ��� s �2! )

125

�� � 0��%� ���

150
#���� 0��%� ���

175
� � � 0��%� ���

200
� � � 0��%� ���

up to 50 interactions/crossing (cf. LHC: 20)

� remarks

☞ TESLA/NLC give access to the same energy

regime as the LHC. They complement the LHC

☞ CLIC uses a technology (two beam accelera-

tion) very different from that used by TESLA/NLC

and is a post TESLA/NLC machine

☞ CLIC begins to give access to energies which

the LHC (without upgrade in energy) cannot reach
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� remarks (cont.)

☞ stage 2 of the the VLHC is a post LHC and post

TESLA/NLC machine

☞ stage 2 of the VLHC breaks completely new

ground

� rest of this talk

☞ remarks on detector requirements

☞ compare LHC upgrade scenarios with stage 1 of

the VLHC where appropriate

☞ discuss physics reach of stage 2 of the VLHC

☞ all estimates/extrapolations carry substantial un-

certainties. More precise results should be avail-

able after Snowmass

� Result:
regardless of what we will find at the LHC we will

eventually want to have a hadron collider operat-

ing in the 100 TeV range

VLHC: UV fixed point of HEP program
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2 – VLHC Detector Issues

� Physics should drive the needed detector technolo-

gies

� LHC technology should be ok for VLHC stage 1

detectors

� need serious R&D for stage 2 detectors

☞ electron detection

➞ high charged track multiplicity is a potential

problem

➞ isolation is messy: many interactions/crossing

☞ muon detection

momentum measurement for multi-TeV � ’s is dif-

ficult and requires a very large, many Tesla magnet

☞ � / �
difficult due to many interactions/crossing
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☞ jets

➞ need small constant term ( � �
� �

� � �
� )

➞ need to understand how many interactions/crossing

influence jet energies (similar to LHC)

➞ need forward jet tag (up to ����� 	 � . �
?)

☞ � -tagging

radiation environment and track multiplicity pose

problems
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3 – Physics Potential of the VLHC

To illustrate the physics potential of the VLHC we con-

sider a few more or less representative examples:

� precision SM physics and anomalous � � � ( � 	
����� ) couplings

� Higgs boson physics

� supersymmetry

� strong electroweak symmetry breaking

� new gauge bosons

� compositeness (excited quarks and leptons)

� extra dimensions
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Precision SM Physics
� this is not the primary reason for building the VLHC!

� well known from previous machines; many areas

of the SM will have been tested at the 1-loop level

� for measurements where LHC is competitive ( � � ,� ����� ), the ultimate precision is limited by system-

atic uncertainties. These are difficult to reduce

� special case: anomalous gauge boson couplings

☞ concentrate on trilinear � � � ( � 	 � ��� )

couplings: �
	 , �
	 , ��
!
☞ non-SM contributions grow with energy ( �

� �

or �
�
); details depend on coupling and process

considered

☞ need form factor to guarantee � -matrix unitar-

ity

☞ limits depend on form factor scale �����
☞ limits scale roughly with ��� 
������ !�� �
➞ increasing � 
���� by a factor 10, strengthens bounds

by about a factor 2 – 3
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� 95% CL limits:
☞ � ��� , ��� from ��� � � ��� �
	 � �
☞ � � 
 , � 
 , � ��
! from ��� � � � � � ! 	�� �� � ��
☞ dipole form factor (similar to proton form fac-
tor) with � ��� 	 �%�

TeV


 �
14 TeV 28 TeV 40 TeV 200 TeV CLIC (5 TeV)�������

100 fb ��� 100 fb ��� 100 fb ��� 200 fb ��� 1 ab ��������
0.034 0.027 0.023 0.013 � ��!#" �%$& �

0.0014 '(��!#")�+* �(��!,")�+* - ��!,")�+* ' ��!#".�%$����/
0.040 0.036 0.035 0.020 01��!#" �%$& /

0.0028 0.0023 0.0020 0.0011 � �2!#"3�%$�54 /
� 0.0038 0.0023 0.0020 0.0011 67�2!#" �+*

☞ for larger values of ����� , the limits improve
substantially:

� � 	 � ���
TeV, � ��� 	 
��

TeV:
� ��� �+8 ��� ���,� �

☞ SM radiative corrections are 9 � ����� � �%� � � �
� hadron and � � � � colliders are complementary

☞ hadron colliders probe high energy behaviour of
helicity amplitudes
☞ � � � � colliders test angular distributions
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Higgs boson physics
� the SM Higgs boson will be discovered, if it exists,

at the Tevatron/LHC over the entire allowed mass

range ( 8 �
TeV)

� measurement of SM Higgs parameters at the LHC:

☞ � � to 0.1%

☞
� � to �

�����

☞ � � Br to 10%

☞ ratios of couplings ( � � � , � � � , �� � � , � � ��� )

to
�%� . � ���

, in many cases dominated by statistics

☞ weak boson fusion and forward jet tagging cru-

cial to measure Higgs couplings

☞ no information on � � � coupling (rate and/or

background limited)
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� precision of ratios of couplings might (need more

studies!) improve by about a factor 2 at SLHC

� TESLA/NLC � ���� couplings (Battaglia):

☞ similar precision for � � � ( � 	 � ��� ) cou-

plings
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� � � � coupling in � � � � collisions:

Ecm (TeV)

δ 
λ H

H
H
 / 

λ H
H

H
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� linear colliders can measure all couplings to 9 � �%� �)� �
� VLHC:

☞ tagging jets in weak boson fusion become more
forward with increasing

� �

➞ easier to suppress bgd.
☞ significantly improve LHC measurement of Higgs
couplings at the VLHC (stage 1)? Measure � � � � ?
➞ need detailed study

Ulrich Baur HEPAP subpanel 06/11/01



what if
� � �

� no Higgs boson is found at the LHC:

☞ strongly interacting Higgs sector?

➞ VLHC (stage 1 may give hints already)

� Higgs boson compatible with a SM interpretation

is found at the LHC, but no sparticles:

➞ TESLA/NLC and/or CLIC for precision Higgs

boson physics

➞ VLHC for high mass sparticles search (and pre-

cision Higgs boson physics?)

� MSSM, Higgs boson(s) and some sparticles are

found at the LHC:

➞ CLIC and/or VLHC complete sparticle spec-

trum and for precision Higgs boson physics
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Supersymmetry
� with 100 fb �2! , the LHC can find squarks ( �

� ) and

gluinos ( �� ) if their masses are � �
TeV

� increasing the LHC luminosity by a factor 10 ex-

tends the mass reach by about 20%.

� doubling the LHC energy to
� � 	 � �

TeV pro-

vides access to �
� and �� with masses up to

# . * TeV

➞ at stage 1 of the VLHC one can detect squarks

and gluinos with masses up to
* . 
�� 
 TeV

� LHC: other sparticles are mainly detected from �
�

and �� cascade decays

☞ for many mSUGRA models, the LHC will miss

most of the sleptons, charginos and neutralinos,

and the heavy Higgs bosons

� one can construct inverted hierarchy models (IHM)

where none of the sparticles can be discovered (

 � )

at the LHC (Baer et al.)
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� stage 2 of the VLHC might be able to probe the

dynamics of SUSY breaking

☞ any SUSY theory must contain a mechanism for

breaking SUSY

☞ and a method (messengers) for communicating

SUSY breaking to the sparticles

☞ two scales:

➞ SUSY breaking vev �
➞ messenger scale �
☞ sparticle mass:

�
�

� � �
�

� : dimensionless suppression factor from coupling

constants

☞ GMSB: � is replaced by vector-like messenger

field; � � � � *��
➞ for

�
� � � , both messenger fields and SUSY

breaking scale could be as low as
�%� . �%��� TeV

➞ could be accessible at stage 2 of the VLHC
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☞ � can be measured from sparticle spectroscopy

➞ expected precision at the LHC: �
#,���

☞ � from NLSP lifetime and mass

� SUSY mass scales:

☞ electroweak scale protected if superpartners cou-

pling most strongly to Higgs boson have masses

8 �
TeV

☞ �
�
, ���� , weak gauginos, higgsinos have � 8 �

TeV

☞ other squarks/sleptons contribute to weak scale

at two loop

➞ � 8 � �
TeV
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what if
� � �

� the LHC finds �
� and �� and maybe a few other spar-

ticles

➞ VLHC and CLIC have a good chance to fill in

the gaps of the sparticle spectrum

� the LHC finds �
�

and �� but misses the first two gen-

eration squarks

➞ VLHC (maybe stage 1, but certainly stage 2)

should find the missing squarks (no quantitative es-

timates so far)

� the LHC discovers SUSY and finds it is low energy

GMSB

➞ stage 2 of the VLHC can probe messenger sec-

tor
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strong electroweak symmetry breaking
� if no Higgs boson exists, one expects that longi-

tudinal � ’s and � ’s interact strongly for
� �� �

�
TeV

� vector boson scattering, eg:

WL

WL

WL
q

q

q

q

WL

� forward jet tagging and central jet veto are power-

ful tools to reduce background

� example:

☞ non-resonant scattering

☞ most difficult case

☞ best channel: � � � � � � � ! 	+� �� 	
☞ compare 1 TeV SM Higgs boson with � -matrix

unitarization model (Bagger et al.)
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☞ � -matrix unitarization: replace partial wave am-

plitudes �
�

� by

� �
�
	 �

�
�

� . �
�

�
�

� significance versus
� �

:

Ulrich Baur HEPAP subpanel 06/11/01



� signal and background have same shape

➞ large statistics needed for a convincing signal

(ATLAS)

☞ hatched: � � and � � background

☞ solid: � -matrix unitarization

☞ dashed: 1 TeV SM Higgs boson
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� LHC, at

 	 �%� � & ��� �)� � �2! :

☞ degradation of forward jet tag and central jet

veto due to pile-up

☞ large (
$ 
�� �

) probability for fake jet tags even

at momenta of a few hundred GeV

➞ luminosities

 � �%����� �(� �)� � �2! do not help

much

what if
� � �

� LHC does not find a Higgs boson but observes hints

for strong electroweak symmetry breaking

➞ stage 1 of the VLHC should find convincing sig-

nal

➞ fully explore strong dynamics at stage 2 of the

VLHC
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Extra gauge bosons
� additional gauge bosons, � �

and � �
, appear in many

GUT models ( � � ,
� � �

)

� the reach depends on the � �
, � �

couplings to quarks

and charged leptons

� concentrate on � � � � � � � with SM couplings

here (classic benchmark)

☞ similar reach for � �
’s
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� can measure:

☞ � �
mass at (energy or luminosity upgraded) LHC

to 8 � �

☞ � �
width to a few percent

☞ couplings using other channels: � � � ���
, � � �

� � � �

� CLIC: from indirect measurements: sensitivity up

to � 
��
	 #��

TeV

� direct search at CLIC: only for � 
 � 8
� �

☞ can measure � �
mass to 8 ��� � �

☞ � �
width and peak cross section to better than 1%
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Compositeness
� if quarks and/or leptons are composite with a scale

� (scale of interactions which binds constituents):

☞ for
� �� � � : contact interactions

☞ for
� �� � � : production of excited quarks ( ��� )

and leptons ( � � )
� contact interactions: example: 2-jet events

☞ expect excess of high � � centrally produced
jets
☞ maximum scale probed for 300 fb �2! :

� �
(TeV) � (TeV)

14 40

28 60

40 � �	�
100 � 
�
��
200 � 
�
	�
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� excited quarks:

☞ produced via � � fusion in
�
-channel: � � � � �

☞ decays: � � � � � � � � � � � � � �
☞ effective Lagrangian for � � � � coupling is of

magnetic moment type



�

��� �
�

� � ����� � ��� �

� mass reach for � � � ���
,
��� 	 �

, � ���
	 � :

☞ LHC, 100 fb �2! (1000 fb �"! ): 7 TeV (8 TeV)

☞
� � 	 ���

TeV, 100 fb �"! (1000 fb �2! ): 10 TeV

(11 TeV)

Ulrich Baur HEPAP subpanel 06/11/01



☞ VLHC:

 � reach for

� � 	 �
, � � �

	 � :

☞ for
� � 	 ��� �

the reach is about a factor 2 smaller

what if
� � �

� the LHC finds evidence for contact interactions?

➞ � 8 ���
TeV

➞ find excited quarks and/or leptons at the VLHC

(stage 2)
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Extra dimensions
� Fields propagating in more than 4 dimensions lead

to Kaluza-Klein (KK) excitations, modifications to
cross section, or � / � signatures

� example:
� � � � ��� ��� � ����� production in ADD model;

graviton manifests as � / �
☞ cross section depends on � 	 , the scale of grav-
ity and 
 , the number of extra dimensions ( 
 	 �

ruled out by celestial mechanics)
☞ main background: � ��� �	�	 � � � � � � (Hinchliffe)

10
-1

1

10

10 2

10 3

10 4

1 2 3 4 5 6 7 8 9 10

δ=2

ETjet > 1 TeV

√s = 14 TeV

soft truncation

all s
^

|ηjet| < 3

MD (TeV)

σ(
p

p
 →

 je
t 

+ 
G

) 
 (

fb
)

background
( jet + Z(νν) )

δ=3

ETjet > 1 TeV

√s = 14 TeV

soft truncation

all s
^

|ηjet| < 3

MD (TeV)

σ(
p

p
 →

 je
t 

+ 
G

) 
 (

fb
)

background
( jet + Z(νν) )

δ=4

ETjet > 1 TeV

√s = 14 TeV

soft truncation

all s
^

|ηjet| < 3

MD (TeV)

σ(
p

p
 →

 je
t 

+ 
G

) 
 (

fb
)

background
( jet + Z(νν) )
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� � 	 reach of the (upgraded) LHC and VLHC:

� warped extra dimensions (RS models):

☞ SM gauge and fermion fields live on the TeV-

brane

☞ or they may propagate in the bulk

� SM fields constrained to the TeV brane:

☞ colliders are KK resonance factories

☞ production of graviton KK excitations ( � ����� ):
�� � � � � � � ����� � � � � �
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� example: LHC (Davoudiasl et al.)

☞ red: � ������� 	 �
TeV,

� � �� � � 	 ��� �

☞ green: � � �	��� 	 � � 

TeV,

� � �� � � 	 ��� �

➞
�

: AdS & curvature scale

� the LHC with 100 fb �2! can determine the spin-2

nature of a KK graviton for � �
�	��� �
* � �

TeV

➞ no VLHC studies yet (after Snowmass?)

☞ CLIC: sensitive to � � ! � up to kinematic limit
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� if no evidence for new particles at LHC or
TESLA/NLC:
☞ search for indirect effects of KK excitations
through contact like interactions
☞ example (SM fields propagating in the bulk)
95% CL, Drell-Yan production (Davoudiasl et al.):

☞ � � ���
! : mass of lightest KK excitation

☞ 	 : bulk mass parameter; controls how far off the
TeV-brane ( 	 � � ) the wave function is located
☞ black: Tevatron, Run I, red: Tevatron, 2 fb �"! ,
blue: Tevatron, 30 fb �2! , green: LHC, 10 fb �"! ,
cyan: LHC, 100 fb �2!

➞ no VLHC studies yet (after Snowmass?)
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what if
� � �

� the LHC finds evidence for extra-dimensions?

➞ the VLHC (stage 2) will directly probe � 	
➞ VLHC could find totally unexpected physics
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VLHC Pocket Guide

channel LHC LHC 6 ' TeV � " TeV 6 "�" TeV

particle 100 fb ��� 1 ab ��� 100 fb ��� 100 fb � � 100 fb � �
�� , �4 2 2.5 4 5.5 � !#"

� �����
4.5 5.4 7 8.5 33

�
	 7 8 10 13 50
�

comp. 33 50 60 75 130
� 


( ��� 6 ) 9 12 15 20 75

� large uncertainties

� not exhaustive

� all masses in TeV
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4 – Summary
� Upgrading the LHC luminosity by a factor 10 in-

creases the reach by 20%
� Doubling the LHC energy to

� � 	 � �
TeV in-

creases the reach by up to a factor 2
� stage 1 of the VLHC only insignificantly increases

the reach of a 28 TeV LHC
➞ makes only sense if LHC is not significantly up-
graded in energy

� At some point we will, inevitably, want to go to the
100 TeV region

� the VLHC is the only machine which can directly
discover new physics in the multi 10 TeV region

� most of the what if
� � �

scenarios discussed suggest
that we need the VLHC
➞ we don’t need to wait for LHC results to decide

� need a coordinated and coherent international plan
for the VLHC which is part of a comprehensive
and global HEP program
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